ICCTF
International Cognition and Cancer Task Force Conference
March 15-17th, 2012
PARIS - FRANCE

This event is supported by:

[Logos of sponsors: GSK, Janssen, Novartis, Pfizer, Roche, Sanofi Aventis]
Longitudinal assessment of chemotherapy-induced structural changes in cerebral WM and its correlation with impaired cognitive functioning in breast cancer patients

S. Deprez, F. Amant, J. Verhoeven, A. Smeets, M-R. Christiaens, A. Leemans, R. Peeters, W. Vanhecke, J. Vandenberghe, M. Vandenbulcke, and S. Sunaert
Breast cancer incidence in Western countries is 1 in 8

Survival rate is increasing

10-40% suffer mild cognitive impairment after systemic adjuvant treatment
 - Impact on quality of life

The pathophysiology is still unclear
Candidate Mechanisms

Immune dysregulation

Induced hormonal changes

Genetic predisposition
 (APOE E4 allele?)

Changes in:
 - cognition
 - brain structure
 - function

Direct neurotoxicity

Oxidative stress and DNA damage

TA Ahles and AJ Saykin, 2007
Possible WM injury?

Changes in WM microstructure measurable with MR Diffusion Tensor Imaging (DTI)?

Potential mechanism = direct neurotoxicity
Based on the measurement of diffusion of water molecules in the brain.

Diffusion tensor imaging

Visualisation AND quantification of white matter

\[D \text{ is equal in all directions} \rightarrow \text{isotropic diffusion} \]

Courtesy Van Hecke W.
Diffusion tensor imaging
Visualisation AND quantification of white matter

Biological tissue: hindered diffusion
- Cell membranes
- Myelin sheaths
- Subcellular structures
 (Hajnal et al., 1991)

D is not equal in all directions

anisotropic diffusion

$D = \begin{pmatrix}
\lambda_1 \\
\lambda_2 \\
\lambda_3
\end{pmatrix}$
Diffusion tensor imaging
Visualisation AND quantification of white matter

Fractional Anisotropy

\[FA = \sqrt{\frac{3}{2}} \sqrt{\frac{(\lambda_1 - \bar{\lambda})^2 + (\lambda_2 - \bar{\lambda})^2 + (\lambda_3 - \bar{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}} \]

↑ anisotropy
Diffusion tensor imaging
Visualisation AND quantification of white matter

Courtesy Van Hecke W.
Diffusion tensor imaging
Visualisation AND quantification of white matter

Courtesy Van Hecke W.
Evaluate possible changes in WM structure and link with cognitive functioning

- Attention / Concentration
- Processing speed
- Memory
- Executive functioning

Are there changes in WM structure PRE vs POS?

Aim of present LONGITUDINAL study

Self-rated subjective questionnaires
- Cognitive functioning
- Depression
- Anxiety
Subjects

Subjects (age:35-50y)
- 34 C+ breast cancer patients
- 16 C- breast cancer patients
- 19 matched healthy controls

9 months

- Surgery
- t1
- Chemotherapy
- t2

- DTI imaging
 - 3T Intera Philips
 - 45 gradient
 - b=800 s/mm²
- Cognitive testing

- DTI imaging
 - 3T Intera Philips
 - 45 gradient
 - b=800 s/mm²
- Cognitive testing
Subjects

<table>
<thead>
<tr>
<th></th>
<th>C+ Patients (n=34)</th>
<th>C- Patients (n=16)</th>
<th>Healthy controls (n=19)</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>SD</td>
<td>MEAN</td>
<td>SD</td>
</tr>
<tr>
<td>Age (years)</td>
<td>44.4</td>
<td>5.6</td>
<td>41.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Depression BDI</td>
<td>7.3</td>
<td>5.2</td>
<td>5.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Anxiety STAI</td>
<td>34.4</td>
<td>9.2</td>
<td>35.9</td>
<td>6.2</td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>114.5</td>
<td>9.1</td>
<td>112.4</td>
<td>7.1</td>
</tr>
</tbody>
</table>

- No significant differences in age, IQ, anxiety
- Significant difference in depression score

 Include as covariate in statistical analysis
1. Motion and eddy-current correction
2. B-matrix rotation
3. Tensor estimation (iterative, non-linear)
4. Affine + VF Non-rig registration
5. Tensor reorientation (PPD)

FA map
Registered FA map
Smoothed FA map

6. Anisotropic Smoothing

Population-based Atlas
Assessment of changes in FA

Pre processed FA maps at t1

Pre processed FA maps at t2

SPM8 Voxel-based PAIRED t test with BDI and IQ as cov of no interest

Statistical thresholding at p<0.001
Significant decreased FA at t2 vs t1 in C+
Significant decreased FA:
Results in control groups

NO significant differences between t1 and t2
For BOTH control groups C- and HC
Neuropsychological tests covering:

- **Attention** (Bourdon-Wiersma, Every Day Attention (TEA), Digit span, CORSI block span)
- **Psychomotor speed** (WAIS digit symbol, 9 hole Pegboard test (9HPT))
- **Memory** (AVLT, RVLT)
- **Executive function** (Stroop, Trail Making Test, COWAT)
- **Verbal IQ**

Self-rated subjective questionnaires:

- **Cognitive Failure Questionnaire** (CFQ)
- **Spielberger State-Trait Anxiety Inventory** (STAY)
- **Beck Depression Inventory** (BDI)
NP assessment
PAIRED T-test t1 vs t2

C+

Performance Sign ↓

- **t2 vs t1**
 - Attention and concentration
 - WAIS letter number sequencing (p=0.01)
 - Psychomotor speed
 - 9PEG (p=0.03 and p=0.007); WAIS digit/symbol (p=0.04)
 - Verbal memory
 - AVLT (p=0.02 and p=0.04)

C-

Performance Sign ↑

- **t2 vs t1**
 - Attention and concentration
 - Bourdon Wiersma (p=0.01); Every day attention (p=0.04)
 - Memory
 - Verbal memory (p=0.004); Visual memory (p=0.01)

HC

Performance Sign ↑

- **t2 vs t1**
 - Attention and concentration
 - WAIS digit span (p=0.01); Every day attention (p=0.001)
 - Psychomotor speed
 - 9PEG (p=0.4)
 - Verbal memory
 - AVLT (p=0.006)
Correlation analysis in C+

Pearson Correlation

<table>
<thead>
<tr>
<th>Region</th>
<th>WM tract</th>
<th>Test</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1 Parietal</td>
<td>Cluster covering corona radiata, corpus callosum</td>
<td>Attention Digit span</td>
<td>0.006</td>
</tr>
<tr>
<td>Cluster 2 Parietal</td>
<td>Superior longitudinal fasciculus</td>
<td>Attention Digit span</td>
<td>0.01</td>
</tr>
<tr>
<td>Cluster 3 Frontal</td>
<td>Superior longitudinal fasciculus</td>
<td>Verbal Memory AVLT learning</td>
<td>0.02</td>
</tr>
<tr>
<td>Cluster 4 Occipital</td>
<td>Forceps major</td>
<td>Verbal Memory AVLT learning</td>
<td>0.04</td>
</tr>
</tbody>
</table>

ΔFA (t2 - t1) in the 4 identified clusters

Δ test scores (t2 – t1)

* Corrected for multiple comparisons
Correlation analysis in C+
Subjective cognitive complaints

Correlation changes self-report and NP test performance:

- Δ CFQ distraction and Δ attention test, verbal memory ($p<0.05$)
- Δ CFQ name and word finding and Δ COWAT ($p=0.02$)
Summary

<table>
<thead>
<tr>
<th>C+</th>
<th>C-</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTI FA analysis</td>
<td>FA Sign ↓</td>
<td>No sign ≠</td>
</tr>
<tr>
<td>NP analysis</td>
<td>Performance Sign ↓ or =</td>
<td>Performance Sign ↑ or =</td>
</tr>
<tr>
<td>Self evaluation</td>
<td>Cognitive complaints Sign ↑</td>
<td>Cognitive complaints =</td>
</tr>
</tbody>
</table>

Correlation between ∆ FA and ∆ performance for C+
Chemotherapy seems to affect WM microstructure

This decrease in FA could be correlated with a decrease in performance on memory and attention tests

DTI WM parameters seem to have the required sensitivity to quantify chemotherapy-induced changes

Deprez et al, Journal of Clinical Oncology 2012
Thanks!!
Cross-sectional DTI study

- C+ lower FA in Frontal, Temporal WM then controls
- C+ lower MD in Frontal WM then controls

Deprez et al, Human Brain Mapping, 2011

+ Significant correlations of FA and NP

ICCTF International Cognition and Cancer Task Force Conference

March 15-17th 2012 - PARIS - FRANCE
Assessment of changes in FA

- 4 regions where FA significantly > at t1 vs t2

<table>
<thead>
<tr>
<th>Region</th>
<th>Cluster p FWE</th>
<th>Cluster size</th>
<th>WM tract</th>
<th>T value</th>
<th>Mean FA C+ POS</th>
<th>Mean FA C PRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parietal</td>
<td>0.002</td>
<td>146</td>
<td>Cluster covering corona radiata, corpus callosum</td>
<td>6.44</td>
<td>0.336</td>
<td>0.350</td>
</tr>
<tr>
<td>Parietal</td>
<td>< 0.001</td>
<td>197</td>
<td>Superior longitudinal fasciculus</td>
<td>5.52</td>
<td>0.206</td>
<td>0.217</td>
</tr>
<tr>
<td>Frontal</td>
<td>0.021</td>
<td>91</td>
<td>Superior longitudinal fasciculus</td>
<td>5.15</td>
<td>0.297</td>
<td>0.311</td>
</tr>
<tr>
<td>Occipital</td>
<td>0.017</td>
<td>96</td>
<td>Forceps major</td>
<td>4.78</td>
<td>0.268</td>
<td>0.280</td>
</tr>
</tbody>
</table>
Diffusion tensor imaging
Visualisation AND quantification of white matter

\[D \text{ is not equal in all directions} \rightarrow \text{anisotropic diffusion} \]